Симптомы экстрасистолии и ЭКГ-признаки нарушения ритма сердца

Экстрасистолия

  • Аритмология
  • Биопсия
  • Диагностика нейроэндокринных опухолей
  • Компьютерная томография
  • Лабораторная диагностика
  • Лучевая диагностика
  • Проктология
  • Магнитно-резонансная томография (МРТ)
  • Ультразвуковая диагностика
  • Урология
  • Функциональные методы диагностики
  • Эндоскопия
  • Аритмология
  • Гастроэнтерология
  • Гематология
  • Гинекология
  • Дерматовенерология
  • Колопроктология
  • Кардиология
  • Неврология
  • Нефрология
  • Онкология
  • Оториноларингология
  • Офтальмология
  • Ревматология
  • Сердечно-сосудистая хирургия
  • Стоматология
  • Терапия
  • Травматология
  • Урология
  • Флебология
  • Хирургия
  • Эндокринология

Тел.: 8-800-25-03-03-2
(бесплатно для звонков из регионов России)
Санкт-Петербург, наб. реки Фонтанки, д. 154
Тел.: +7 (812) 676-25-25

Санкт-Петербург, В.О., Кадетская линия, д. 13-15
Тел.: +7 (812) 676-25-25

Санкт-Петербург, ул. Циолковского, д.3
Тел.: +7 (812) 676-25-10

Экстрасистолия – это внеочередное преждевременное возбуждение сердца или его отделов, возникающее в эктопическом (необычном) очаге под влиянием патологического импульса. Обычно экстрасистолы ощущаются пациентом как сильный сердечный толчок с «провалом» или «замиранием» после него. Некоторые экстрасистолы могут возникать незаметно для больного.

Экстрасистолия – это внеочередное преждевременное возбуждение сердца или его отделов, возникающее в эктопическом (необычном) очаге под влиянием патологического импульса. Обычно экстрасистолы ощущаются пациентом как сильный сердечный толчок с «провалом» или «замиранием» после него. Некоторые экстрасистолы могут возникать незаметно для больного. Экстрасистолы можно обнаружить более чем у 75% людей.

Экстрасистолия – причины развития

Причинами развития экстрасистолии могут быть как заболевания самого сердца: кардиосклероз, инфаркт миокарда, воспалительные заболевания сердечной мышцы, пороки сердца, так и болезни других органов и систем. Экстрасистолы могут возникать при заболеваниях желудочно-кишечного тракта, остеохондрозе позвоночника, эндокринных болезнях, артериальной гипертензии. Часто являются следствием чрезмерного употребления кофе, алкоголя, курения. Появление экстрасистол при приеме сердечных гликозидов – один из признаков передозировки принимаемого препарата. Заболевания нервной системы (нейроциркуляторные дистонии) также могут вносить свой вклад в возникновение этих нарушений ритма сердца. Экстрасистолы могут появиться и у здорового человека при чрезмерных физических и психических нагрузках.

Симптомы экстрасистолии

Пациент может предъявлять жалобы на «толчки» и сильные удары сердца, обусловленные энергичной внеочередной систолой желудочков после компенсаторной паузы, чувство «замирания» в груди, «кувыркания сердца», ощущение остановившегося сердца. Для пациентов, страдающих экстрасистолией функционального происхождения, более характерны симптомы невроза и дисфункции вегетативной нервной системы: тревога, бледность, потливость, страх, чувство нехватки воздуха. При органическом происхождении экстрасистол проявления обычно отсутствуют. Частые (особенно ранние и групповые) экстрасистолы приводят к снижению сердечного выброса, уменьшению мозгового, коронарного и почечного кровотока на 8—25 %. Из-за этого при стенозирующем атеросклерозецеребральных и коронарных сосудов могут возникать преходящие нарушения мозгового кровообращения, приступы стенокардии. Наличие желудочковых экстрасистол при сопутствующей кардиальной патологии может привести к желудочковой тахикардии и стать угрозой для жизни пациента.

Диагностика и виды экстрасистолии

• ЭКГ в 12 отведениях – позволяет выявить морфологию и возможную локализацию очага экстрасистолии.

• Суточное холтеровское мониторирование (ХМ -непрерывная запись ЭКГ) – наиболее достоверный метод диагностики преходящих нарушений ритма сердца за сутки наблюдения.

• ЭхоКГ (УЗИ сердца) – выявляет патологию миокарда, определяет состояние клапанного аппарата сердца.

При анализе ЭКГ возможно говорить о единичных и групповых экстрасистолах. Группу из 5 экстрасистол возможно расценивать как эктопическую тахикардию.

По локализации эктопического очага выделяют:

  • предсердные,
  • атриовентрикулярные,
  • желудочковые экстрасистолы.

Экстрасистолия – лечение

Необходимо устранение провоцирующих факторов и лечение основного заболевания. Единичные экстрасистолы без клинических проявлений не лечат.

Нейрогенные экстрасистолы лечат налаживанием режима труда и отдыха, дают диетические рекомендации, полезны регулярные занятия спортом, применяется психотерапия, транквилизаторы или седативные средства (например, настойка валерианы). Самостоятельный прием препаратов, самолечение различными методами является крайне не желательным и не безопасным, так как может быть жизнеугрожающим, если не определен характер, механизмы и причины экстрасистол.

Выбор способа лечения экстрасистолии осуществляется специалистом с учетом клинической картины заболевания, данных инструментально-диагностических исследований и действующих Российских и Европейских рекомендаций.

С помощью приема антиаритмических препаратов можно устранить экстрасистолы, но после отмены препаратов экстрасистолия возобновляется. Кроме того, самое главное: у лиц с органическим поражением сердца на фоне эффективного лечения экстрасистолии антиаритмическими препаратами выявлено увеличение смертности более, чем в 3 раза! Только при лечении бета-блокаторами или амиодароном не было отмечено повышения риска смертности. Однако, у ряда больных наблюдались осложнения, включая опасные для жизни. Эффективность и безопасность применения препаратов калия и магния или т.н. “метаболических” препаратов окончательно не установлены.

Достаточно радикальным и эффективным методом лечения экстрасистолии является катетерная абляция (“прижигание”) очага экстрасистолии. Операция, в среднем, выполняется в течение 45-55 минут, и через сутки пациент может быть выписан из стационара.

Экстрапирамидная система (пути) – строение, функции и значение

1. «Ископаемые» головного мозга 2. Функции 3. Структура 4. Особенности функционирования и взаимосвязи 5. В заключение

В соответствующих статьях была описана достаточно подробно пирамидная система, которая обеспечивает у человека произвольные или сознательные движения. Но, очевидно, должна быть и система, которая занимается обеспечением непроизвольных или автоматических движений? Да, такая особая, более древняя двигательная нервная система существует, причем обособленно от нашего сознания.

«Ископаемые» головного мозга

Ее название – экстрапирамидная система. Оно прижилось в неврологии, но на самом деле является не совсем удачным. Анатомически экстрапирамидная система не лежит снаружи пирамидных пучков, то есть, не расположена «экстра». Она находится «в глубинах» головного мозга. Такая структура развилась филогенетически. Ведь автоматизированные, рефлекторные движения были почти единственным видом двигательной активности, пока не развилась большая кора головного мозга.

На самом деле, экстрапирамидные пути появляются тогда, когда пирамидного тракта вовсе еще не существует, например, у древних рыб. У амфибий (земноводных) пути этой системы усложняются, появляются дополнительные образования (подкорковые центры). Такое название условно, ведь полноценной коры еще нет и эти центры являются высшими органами регуляции моторики и тонуса, тем более амфибии могут охотиться и передвигаться без участия мышления, а на рефлекторных актах.

У человека постепенно развивалась более совершенная система, функции экстрапирамидной системы свелись к обслуживанию скелетных мышц и поддержанию высших безусловных рефлексов, а роль «вождя» перешла к коре. Познакомимся с движениями, которые обеспечивает эта система, а затем обратимся к ее анатомии.

Функции

Если внимательно подумать, то можно понять, какие двигательные функции являются у человека бессознательными и не требуют участия коры. Это те движения, которые имеют только однозначную трактовку. Что это значит и как понять?

  • Регуляция мышечного тонуса. Известно, что мы имеем некоторый тонус мышц покоя, они никогда не являются абсолютно расслабленными, даже во сне. Тем не менее, мы сознательно никогда не думаем о том, чтобы как-то изменить или поддержать тонус, это обеспечение «готовности» к движению и включает экстрапирамидная система;
  • Охранные рефлексы. К ним относятся моргание и вздрагивание всем телом при внезапном выстреле и громком звуке. Совершенно ясно, что эти движения являются рефлекторными и производятся без участия мышления и сознания;
  • Поддержание равновесия. Прекрасным примером такого «набора высших рефлексов» является поведение поскользнувшегося на льду человека в попытках удержать равновесие. Он может резко отклонить корпус, бессознательно взмахнуть рукой, и только потом выяснится, что в руке оказалась авоська с яйцами, на пути которой внезапно встретилась стена. Яйца разбиты, но остановить это движение человеку было не под силу: включение резкого моторного акта, вернувшего на место центр тяжести тела, было автоматическим;

В последнем примере были задействованы не только структуры экстрапирамидной системы, но и «весь цвет» автономных образований, например, преддверно-улитковый орган равновесия (статокинетический анализатор), мозжечок и красные ядра, о которых будет сказано особо.

  • Приобретение и закрепление навыков.

Это интереснейший феномен. Мы видим, как ловко может работать ювелир или резчик по дереву, музыкант – играть на инструменте, читая ноты прямо с листа, а шлифовальщик – одним движением затачивать нож, получая идеально ровную грань. При этом они разговаривают с нами, отвлекаются, и выполняют свою работу, словно шутя.

Это экстрапирамидная система, после долгих повторов и обучения, смогла взять на себя стереотипный моторный акт. Повторяясь слишком часто, он «научил» экстрапирамидную нервную систему. Кора головного мозга «поняла», что столько раз повторенное движение может далее быть передано из «высшего контроля» на «периферию», в связи с «полным освоением» техники в рефлекторные акты.

Кроме того, ритмика, пластичность и темп движений, над которыми мы совершенно не задумываемся, также принадлежат экстрапирамидной системе.

В том случае, если происходит поражение этого отдела, то возникают неврологические двигательные расстройства. К ним относится нарушение мышечного тонуса, обездвиженность, либо, наоборот, появление бессознательных гиперкинезов. Но о неврологии этих поражений мы расскажем в других статьях, а сейчас вернемся к анатомии.

Структура

Строение экстрапирамидной системы, как древнего отдела, в корне отличается от строения коры. Если кора имеет свои цитоархитектонические поля, или зоны, и работа по образованию, восприятию и проведению мозговых нервных импульсов идет «по площадям», то анатомия экстрапирамидной системы представлена отдельными компактными, глубоко залегающими в толще белого вещества образованиями, или ядрами. Таким образом, ядерный, компактный тип древней системы движений мы унаследовали от рыб.

Также широко распространено такое название, как «базальные ядра», «базальные ядра полушарий». Иногда говорят «базальные ганглии», «подкорковые ганглии», «подкорковые узлы» и даже просто «подкорка». Конечно, в последнем случае, когда говорят, что «я воспринимаю это на подкорке», то речь идет об интуиции, либо на автоматическом восприятии, но речь не идет в буквальном смысле об экстрапирамидной системе.

Схема экстрапирамидной системы, в свою очередь, представлена самым древним образованием (бледным шаром, globus pallidus), и новыми структурами, о которых скажем далее. Не стоит удивляться такому необычному названию. Ведь мозговые ядра, обеспечивающие бессознательные движения, имеют такое причудливое видимое строение и схожесть с некоторыми предметами. Они описаны и получили свое название задолго до появления нейроанатомии, способов получения срезов мозга и их окрашивания. Настоящее исследование экстрапирамидной системы началось лишь со второй половины XIX века. Функции были описаны, а сами образные и яркие названия остались. Всего в составе ядер различают: три их скопления с каждой стороны:

  • Стриатум, или полосатое тело. В свою очередь, оно состоит из хвостатого и чечевицеобразного ядер. Само чечевицеобразное ядро в своем составе имеет древнюю часть – бледный шар, и новую часть – скорлупу, putamen.

Сам бледный шар, как филогенетически самая первая структура, «за древностию лет», выделяется в особую паллидарную систему. Остальные базальные ядра этой группы – скорлупа, хвостатое и чечевицеобразное ядро именуют «неостриатумом», а все вместе – стриопаллидарной системой. Несмотря на всю кутерьму с названиями, эти небольшие ганглии являются высшим центром экстрапирамидной системы и прочно связаны множеством путей с выше- и нижележащими отделами;

  • Ограда, или claustrum, лежащая в виде тонкой серой прослойки. О ее функциях до сих пор идет спор, пока о ней известно мало;
  • Миндалевидное тело, имеющее обширные связи с лимбической системой и подкорковыми центрами обоняния;
  • Парные образования – красные ядра, или nucleus ruber.

Они расположены в среднем мозге и являются мощной «релейной станцией». От них начинается руброспинальный нисходящий путь, который и формирует бессознательные импульсы к мышцам скелета. Этот путь перекрещивается, образует перекрест Фореля и иннервирует мускулатуру противоположной половины тела. Они красного цвета в связи с мощной капиллярной сетью и повышенным содержанием железа. В свою очередь, на красные ядра переключаются сверху нейроны, идущие по мозжечковым путям, от зубчатых, dentatus, и пробковидных ядер мозжечка, emboliformis, а также от бледного шара;

  • Мозжечок. Не являясь экстрапирамидной структурой, он вносит исключительно важный вклад в бессознательное равновесие, и должен быть упомянут среди структур этой системы. Он подобен компьютеру, который полностью получает чувствительную информацию о положении тела и равновесии на входе, и модулирует двигательный ответ на выходе;
  • Черная субстанция. Это парный орган, названный так вследствие накопления меланина. Она расположена между покрышечной частью и ножкой мозга. Она очень хорошо кровоснабжена, имеет многочисленные связи, как с таламусом, так и со всеми базальными ядрами. Выделяют отдельно нигростриальную зону или связь черной субстанции посредством медиаторов с базальными ганглиями.

Нейротрансмиттером, или переносчиком импульсов между ядрами, является как дофамин (например, он снижает тормозящие функции в системе стриатума), так и ГАМК (Гамма-аминомасляная кислота), которая тормозит работу, например, черной субстанции.

Особенности функционирования и взаимосвязи

Тонкие взаимоотношения между всеми структурами экстрапирамидной системы и другими образованиями поистине неисчерпаемы и до сих пор во многом остаются неизученными. Так, кроме названных структур, существуют связи с таламусом и ядрами ретикулярной формации, с оливами, ядрами четверохолмия, ядром Даркшевича. Пути пронизывают мост, мозжечок. От разных отделов коры головного мозга (лобных долей и гиппокампа) идут к экстрапирамидной системе нисходящие волокна. В работе системы принимают участие также гамма-мотонейроны спинного мозга и восходящие пути проприоцептивной чувствительности (анализатор суставно-мышечного чувства).

Проводящие пути экстрапирамидной системы также включают в себя эфферентные, двигательные нисходящие пути от мозжечка, который имеет большое значение в поддержании бессознательного равновесия позы, и ретикулоспинальный путь, который осуществляет регуляцию двигательной активности спинного мозга.

Деятельность и активность экстрапирамидной системы по числу нейронных последовательностей может превышать более быструю пирамидную. Так, существует шестинейронный путь, первый нейрон которого находится в премоторной зоне коры, второй – в области моста, третий – в коре мозжечка, четвёртый – в зубчатых или пробковидных ядрах, пятый – в красных ядрах, шестой – в передних рогах спинного мозга.

Таким образом, часть сознательных, корковых импульсов после обработки в мозжечке и «коррекции координации движений» попадает на бессознательный руброспинальный тракт, который называется «монаковский пучок».

Конечно, мы можем совершать небольшое количество целенаправленных движений, при этом регуляция тонуса мышц и позы захватывает во время бодрствования все мышцы.

Важно помнить, что глубокая интеграция экстрапирамидной и лимбической системы приводит к тому, что эмоциональные расстройства меняют непроизвольные жесты и мимику человека, и наоборот – поражения экстрапирамидной системы вызывают насильственный плач или смех, приводят к речевым нарушениям.

Выше говорилось, что бессознательное моргание и вздрагивание при звуке выстрела говорит о том, что первичные анализаторы зрения и слуха – латеральные и медиальные коленчатые тела, принимая чрезмерный, говорящий об опасности раздражитель, вначале переключают его на экстрапирамидные волокна, а уж затем, после закрывания глаз, наступает осознание того, что произошло.

При этом человек может побледнеть, у него возникнет сердцебиение и другие вегетативные реакции на раздражитель. Это говорит о том, что пути слуха и зрения ассоциированы не только с системой бессознательных движений, но и с таламусом и центрами вегетативной регуляции. Несмотря на все открытия, такая интегральная, целостная деятельность мозга и по сей день представляет большую загадку для исследователей.

Читайте также:  Трескается кожа на руках: причины и лечение народными средствами у ребенка, взрослых

В заключение

Нужно сказать, что экстрапирамидные расстройства – это один из интереснейших разделов неврологии, который может проявиться изменением тонуса мышц – от восковой гибкости до полной ригидности, появлением насильственных движений и угасанием нужных, возникновением хореи, тиков, различных гиперкинезов.

Часто эти заболевания бывают наследственными (как, например, хорея Гентингтона), их лечение продолжается всю жизнь и может представлять значительные трудности, а их патогенез часто связан с изменением нормального баланса медиаторов в центральной нервной системе. Но об этом разговор у нас пойдет в следующей статье, которая так и называется – «экстрапирамидные нарушения».

Экстрапирамидная система — основа сознательных действий. Экстрапирамидная система: строение и функции

Термин «экстрапирамидная двигательная система» широко используют в клинических кругах для обозначения всех отделов головного мозга, которые участвуют в двигательном контроле, но не являются частью прямой кортикоспинальной пирамидной системы. Сюда входят пути через базальные ганглии, ретикулярную формацию ствола мозга, вестибулярные ядра и часто — через красные ядра.

Это всеобъемлющая и многообразная группа областей нервной системы, контролирующих двигательные функции, что так называемой экстрапирамидной системе как целостной системе трудно приписать специфические нейрофизиологические функции. По этой причине термин «экстрапирамидная двигательная система» все реже используют как в клинике, так и в физиологии.

Кортикоруброспинальный путь двигательного контроля; показана также связь этого пути с мозжечком

а) Возбуждение двигательных областей спинного мозга первичной моторной корой и красным ядром. Нейроны моторной коры организованы в вертикальные колонки. В отдельных статьях на сайте (просим вас пользоваться формой поиска выше) указывалось, что клетки соматосенсорной и зрительной коры организованы в вертикальные колонки. Клетки моторной коры также собраны в вертикальные колонки, диаметр которых составляет долю миллиметра; одна колонка включает тысячи нейронов.

Каждая колонка клеток функционирует как единое целое, обычно стимулируя группу мышц-синергистов, а иногда лишь одну мышцу. Кроме того, как и вся кора большого мозга, колонка имеет 6 отдельных слоев клеток. Все пирамидные клетки, дающие начало кортикоспинальным волокнам, лежат в 5 слое клеток от поверхности коры, а сигналы входят в колонку через 2-4 слои; 6 слой дает начало основной части волокон, которые связывают колонку с другими регионами самой коры большого мозга.

б) Функция каждой колонки нейронов. Нейроны каждой колонки действуют как интегративная система обработки данных, использующая информацию от множества источников, на основании которой формируется ответ на «выходе» из колонки. Кроме того, каждая колонка может функционировать как усилительная система, стимулируя одновременно большое число пирамидных волокон, связанных с одной мышцей или с мышцами-синергистами.

Это важно, поскольку стимуляция одиночной пирамидной клетки редко может возбудить мышцу. Обычно для вызова сокращения определенной мышцы нужно, чтобы одновременно или в быстрой последовательности возбудились 50-100 пирамидных клеток.

Конвергенция различных двигательных регуляторных путей на передних мотонейронах

в) Динамические и статические сигналы, передаваемые пирамидными нейронами. Если для запуска быстрого сокращения к мышце посылается сильный сигнал, то дальнейшее длительное поддержание сокращения может обеспечить гораздо более слабый продолжительный сигнал. Это обычный характер возбуждения, обеспечивающий мышечные сокращения.

Для этого каждая колонка клеток возбуждает две популяции пирамидных нейронов, одну из которых называют динамическими нейронами, а другую — статическими нейронами. В течение короткого периода в начале сокращения интенсивно возбуждаются динамические нейроны, вызывая начальное быстрое разбитие силы. Затем статические нейроны возбуждаются с гораздо меньшей частотой и, продолжая возбуждаться с этой частотой, поддерживают силу сокращения так долго, как это необходимо.

Нейроны красного ядра имеют подобные динамические и статические характеристики, за исключением того, что в красном ядре больше процент динамических нейронов, а в первичной моторной коре больше процент статических нейронов. Возможно, это объясняется тем, что красное ядро тесно связано с мозжечком, а мозжечок играет важную роль в быстрой инициации мышечного сокращения.

24.Экстрапирамидная система. Экстрапирамидная система

Экстрапирамидная система – это система корковых, подкорковых и стволовых ядер головного мозга и проводящих путей соединяющих их между собой, а так же с двигательными ядрами черепных нервов ствола головного мозга и передних столбов спинного мозга, осуществляющая непроизвольную автоматическую регуляцию и координацию сложных двигательных актов, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций.

Состав экстрапирамидной системы:

Кора полушарий большого мозга;

Базальные ядра конечного мозга: хвостатое и чечевицеобразное;

Субталамическое ядро и ядра таламуса промежуточного мозга;

Красное ядро и черное вещество, ядра крыши среднего мозга;

Ядра нижней оливы;

Ядра ретикулярной формации;

Функции экстрапирамидной системы:

Обеспечение сложных автоматизированных движений (ползание, плавание, бег, ходьба, плевание, жевание и другие);

Поддержание тонуса мышц и его перераспределение при движении;

Участие в артикуляции речи и мимических выразительных движениях;

Поддержание сегментарного аппарата в готовности к действию.

25.Лимбическая система.

Лимбическая система – неспецифическая система головного мозга, связанная с обонятельным анализатором, главной функцией которой является организация целостного поведения и интеграция процессов физиологической активности.

Функции лимбической системы:

Эмоционально-мотивационное поведение и адаптация к условиям внешней и внутренней среды;

Сложные формы поведения: инстинкты, пищевое, половое, оборонительное, смена фаз сна и бодрствования;

Регулирующее влияние на кору и подкорковые образования для установки необходимого соответствия уровней активности.

Состав лимбической системы:

Корковые структуры: лимбическая доля (поясная, парагиппо-кампальная, зубчатая и ленточная извилины) и гиппокамп;

Подкорковые образования: базальная часть конечного мозга, структуры промежуточного мозга (сосочковые тела, ядра поводка), отделы среднего мозга (межножковое ядро, центральное серое вещество) и проводящие пути, обеспечивающие связь между этими структурами.

Особенность лимбической системы – формирование между ядрами двусторонних связей и множества замкнутых кругов разного диаметра и протяженности (большие и малые).

Большой лимбический круг:

Состав: гиппокамп – свод – сосцевидные тела гипоталамуса – сосцевидно-таламический пучок Вик-д`Азира – передние ядра таламуса – таламопоясная лучистость – поясная извилина – парагиппокампальная извилина – гиппокамп.

Функция: обеспечение процессов памяти и обучения.

Малый лимбический круг:

Состав: миндалевидное тело – гипоталамус – ретикулярная формация среднего мозга – миндалевидное тело.

Функция: регуляция агрессивно-оборонительных, пищевых и сексуальных форм поведения.

26.Закономерности в строении двигательных проводящих путей.

Нисходящие, Эфферентные, Двигательные, Сознательные ( Tr. Cortico…), Рефлеткорные (от подкорковых образований).

Среди трактов выделяют Главный Пирамидный Путь, который состоит из 3-х трактов. Первый проходит от нейронов прецентральной извилины до двигательных нейронов, сосредоточенных в ядрах ствола мозга – это кортико-ядерный путь. Два других тракта: кортикоспинальные передний и боковой идут от прецентральной извилины до ядер передних рогов спинного мозга. Волокна каждого тракта имеют перекресты в разных отделах мозга.

Корково-ядерный путь сознательных движений перекрещивается над ядрами черепных нервов в мозговом стволе. Он включает в себя двух нейронные рефлекторные дуги.

Латеральный и передний кортикоспинальные пути тоже проводят сознательные импульсы. Латеральный путь перекрещивается на границе продолговатого и спинного мозга, образуя пирамидный перекрест. Передний путь перекрещен в спинном мозге.

Корково-мосто-мозжечковый путь перекрещивается в мосту на уровне средних ножек мозжечка. Первые двигательные нейроны находятся в коре лобной, височной, теменной и затылочной долей. Свои аксоны они проводят через внутреннюю капсулу (колено). Вторые нейроны лежат в двигательных ядрах моста и коре полушарий мозжечка. Аксоны из мозжечка выходят через среднюю ножку к двигательным ядрам моста, где переключаются.

Нисходящие экстрапирамидные тракты бессознательных движений относятся к древним путям, и они всегда начинаются в подкорковых структурах мозга. Рефлекторные дуги у них имеют двух нейронный состав и перекресты на разных уровнях мозга. Часть из них проходит только по одной стороне, не образуя перекрестов.

Красноядерно-спинномозговой путь регуляции и координации мышечного тонуса и автоматических мышечных сокращений перекрещивается в среднем мозге.

Преддверно-спинномозговой путь равновесия и координации движений.

Покрышечно-спинномозговой путь зрительно-слуховых безусловных рефлексов.

Оливо-спинальный путь автоматического мышечного тонуса.

Задний продольный пучок — путь координации движений глазных яблок, головы и шеи.

Волокна пучка связывают между собой двигательные ядра III, IV, VI пары черепных нервов и ядра передних рогов спинного мозга шейного и грудного отделов.

Характеристика пирамидных путей.

Пирамидные Tractus pyramidalis (волевые, сознательные) проводят импульсы от коры к двигательнгым ядрам и далее к мышцам. Их подразделяют на: fibrae corticospinales и fibrae corticonucleares

Fibrae (tractus) corticospinalis

1 нейрон – гигантская пирамидная клетка (Беца) – нейрон пятого слоя коры прецентральной извилины

Пути проходят через внутреннюю капсулу в задней ее ножке сразу за коленом.

В среднем мозге волокна пути располагаются в ножках мозга, в средней их части.

В области моста – волокна проходят в вентральной части моста

В продолговатом мозге – в пирамидах.

На границе со спинным мозгом 85% путей совершают перекрест (decussatio pyramidum), остальные 15% идут в спинной мозг без перекреста и переходят на противоположную сторону в соответствующем сегменте спинного мозга.

2 нейрон – клетка двигательного ядра переднего рога спинного мозга.

Аксон второго нейрона проходит в составе переднего корешка, канатика и ветвей спинномозгового нерва к скелетной мышце.

Fibrae (tractus) corticonuclearis (corticobulbaris)

1 нейрон – гигантская пирамидная клетка (Беца) пятого слоя коры в прецентральной извилине

Путь проходит в колене внутренней капсулы

2 нейрон – клетки соматических двигательных ядер черепных нервов

Аксон второго нейрона проходит в составе черепного нерва к мышце

Путь дает ответвления на свою и противоположную сторону, за исключением ядер Х11 и V11 пар черепных нервов

Характеристика двигательных экстрапирамидных путей.

Экстрапирамидные Пути проводят импульсы к мышцам от подкорковых центров: базальных ядер полушарий, дорзального (зрительного) бугра, красного ядра, черного вещества, ядер оливы, ядер вестибулярного нерва, ретикулярной формации. Экстрапирамидная система автоматически поддерживает тонус скелетной мускулатуры и обеспечивает работу мышц антагонистов. К экстрапирамидным путям относятся: tractus rubrospinalis, tractus tectospinalis, tractus reticulospinalis, tractus olivospinalis, tractus vestibulispinalis. Тракты начинаются в соответствующих подкорковых ядрах (1 нейрон). Аксоны первых нейронов, предварительно совершив переход на противоположную сторону, переключаются на двигательные клетки передних рогов спинного мозга отростки которых заканчиваются в скелетных мышцах. К экстрапирамидной системе относятся и пути корково-мозжечковой корреляции (tractus cortico—ponto – cerebello – dentato – rubro – spinalis.

Принципиальные морфологические отличия центрального и периферического паралича.

ПАРАЛИЧ – полное выпадение двигательных функций с отсутствием мышечной силы.

Парез – ослабление двигательных функций со снижением мышечной силы.

Паралич и парез развиваются в результате различных патологических процессов (травмы, кровоизлияния и др.) в центральной или периферической части нервной системы.

Центральный паралич

1.Группы мышц поражены диффузно, не бывают поражения отдельных мышц Умеренная атрофия

2.Спастичность с повышением сухожиль­ных рефлексов

3.Разгибательный подошвенный рефлекс, симптом Бабинского

4.Фасцикулярных подергиваний не бы­вает

Периферический паралич

1.Могут быть поражены отдельные мыш­цы

2.Выраженная атрофия, 70—80% от общей массы

3.Вялость и гипотония пораженных мышц с выпадением сухожильных рефлек­сов Подошвенный рефлекс, если вызывает­ся, то нормального, сгибательного типа

4.Могут быть фасцикуляции; при электромиографии выявляют снижение количества двигательных единиц и фибрилляции

Закономерности в строении чувствительных проводящих путей.

Восходящие, Центростремительные, Афферентные, Чувствительные (…), Сознательные (в кору), рефлекторные.

Характеристика сознательных афферентных путей.

Проприоцептивные пути коркового направления

Fasciculus gracilis (Goll) и fasciculus cuneatus (Burdach).

1 нейрон – псевдоуниполярная клетка спинномозгового узла

Дендрит первого нейрона заканчивается рецептором в мышцах, сухожилиях, связках, суставах

Аксон в составе заднего корешка идет к спинному мозгу, не вступая в серое вещество заднего рога, ложится в задние канатики и идет до продолговатого мозга (tractus gangliobulbaris)

2 нейрон – nucleus gracilis et nucleus cuneati лежит в одноименных бугорках продолговатого мозга

Аксоны вторых нейронов изгибаясь вентрально и переходя на противоположную сторону, дают начало формированию медиальной петли

(Lemniscus medialis – tractus bulbothalamicus)

3 нейрон – клетки латерального ядра дорзального (зрительного) бугра

Отростки третьих нейронов (tractus thalamocorticalis) проходят через заднюю ножку внутренней капсулы и достигают прецентральной и постцентральной извилин (клетки четвертого слоя коры).

Характеристика рефлекторных афферентных путей.

Проприоцептивные пути мозжечкового направления

Tractus spinocerebellaris anterior (Gowers) et spinocerebellaris posterior (Flechsig)

1 нейрон – псевдоуниполярная клетка спинномозгового узла

Дендрит первого нейрона заканчивается рецептором в мышцах, сухожилиях, связках, суставах

Аксон в составе заднего корешка входит в серое вещество спинного мозга и переключается на тело второго нейрона

2 нейрон: для Gowersa – nucleus intermediomedialis

для Flechsiga – nucleus thoracicus

Аксоны второго нейрона пути Gowersa через переднюю белую спайку направляются в боковой канатик противоположной стороны, поднимаются в продолговатый мозг, мост и в верхнем мозговом парусе переходят на противоположную сторону и через верхнюю ножку мозжечка достигают коры червя. Аксоны второго нейрона пути Flechsiga направляются в боковой канатик той же стороны, поднимаются в продолговатый мозг и через нижнюю ножку мозжечка достигают коры червя.

Медиальная петля.

Пучок волокон белого вещества образованный аксонами тонкого и клиновидного ядер, проводит сознательный проприоцептивные пути и пути общей чувствительности, т.к. к ней присоединяются спиноталамические пути.

Комиссуральные нервные волокна головного мозга, их строение.

Комиссуральные нервные волокна соединяют аналогичные области двух полушарий. Нервные волокна мозга подразделяются на ассоциативные, комиссуральные и проекционные — все они образуют проводящие пути для нервных импульсов. Ассоциативные волокна соединяют клетки в пределах одного полушария, а в спинном мозге — на уровне одной половины. Комиссуральные волокна связывают правое и левое полушарие, правую и левую половины спинного мозга. Проекционные волокна соединяют выше и нижележащие структуры мозга: клетки коры с клетками ядер и органами. Они подразделяются на восходящие (сенсорные) и нисходящие (двигательные) пути или тракты.

Коммисуральные волокна, входящие в состав так называемых мозговых комиссур, или спаек, соединяют симметричные части обоих полушарий. Самая большая мозговая спайка — мозолистое тело, corpus callosum, связывает между собой части обоих полушарий, относящиеся к neencephalon.

Две мозговые спайки, comissura anterior и comissura inferior, гораздо меньшие по своим размерам, относятся к rhinencephalon и соединяют: comissura anterior — обонятельные доли и обе парагиппокампальные извилины, comissura fornicis — гиппокампы.

Под мозолистым телом находится так называемый свод, forniх, представляющий два дугообразных белых тяжа, которые, в средней своей части, corporis fornicis, соединены между собой, а спереди и сзади расходятся, образуя впереди столбы свода, columnae fornicis, позади — ножки свода, crura fornicis. Crura fornicis, направляясь назад, спускаются в нижние рога боковых желудочков и переходят там в fimbria hyppocampi. Между crura fornicis под splenium corporis callosi протягиваются поперечные пучки нервных волокон, образующие commissura fornicis. Передние концы свода, columnae fornicis, продолжаются вниз до основания мозга, где оканчиваются в corpora mamillaria, проходя через серое вещество hypothalamus. Columnae fornicis ограничивают лежащие позади них межжелудочковые отверстия, соединяющие III желудочек с боковыми желудочками. Впереди столбов свода находится передняя спайка, commissura anterior, имеющая вид белой поперечной перекладины, состоящей из нервных волокон. Между передней частью свода и genu corporis callosi натянута тонкая вертикальная пластинка мозговой ткани — прозрачная перегородка, septum pellucidum, в толще которой находится небольшая щелевидная полость, cavum septi pellucidi.

Читайте также:  Овестин при климаксе : инструкция по применению и отзывы

Морфологические основы альтернирующего синдрома.

Альтерни́рующие синдромы— синдромы, которые сочетают в себе поражение черепно-мозговых нервов на стороне очага с проводниковыми расстройствами двигательной и чувствительной функций на противоположной стороне.

Они возникают при поражении анатомических составляющих мозгового ствола: ножек мозга – пединкулярные перекрестные синдромы, моста – понтинные, продолговатого мозга – бульбарные. К ним же относится и перекрестная гемиплегия — повреждение перекрещивающегося на разных уровнях мозга пирамидного проводящего пути. Поэтому возникает, например, паралич или парез правой руки и левой ноги при поражениях ниже мозгового ствола. При противоположной гемианестезии повреждаются восходящие пути: спиноталамические и бульботаламические такты, волокна медиальной петли.

Экстрапирамидная система

Экстрапирамидная система (лат.: extra — вне, снаружи, в стороне + pyramis, греч.: πϋραμίς — пирамида) — совокупность структур (образований) головного мозга, участвующих в управлении движениями, поддержании мышечного тонуса и позы, минуя кортикоспинальную (пирамидную) систему. Структура расположена в больших полушариях и стволе головного мозга. [1] [2]

Экстрапирамидные проводящие пути образованы нисходящими проекционными нервными волокнами, neurofibrae projectiones descendens, по происхождению не относящимися к гигантским пирамидным клеткам (клеткам Беца) коры больших полушарий мозга. Эти нервные волокна обеспечивают связи мотонейронов подкорковых структур (мозжечок, базальные ядра, ствол мозга) головного мозга со всеми отделами нервной системы, расположенными дистальнее. [3]

Экстрапирамидная система состоит из следующих структур головного мозга:

  • базальные ганглии
  • красное ядро
  • интерстициальное ядро
  • тектум
  • чёрная субстанция (см. Средний мозг)
  • ретикулярная формация моста и продолговатого мозга
  • ядра вестибулярного комплекса
  • мозжечок[1]
  • премоторная область коры [2]
  • полосатое тело[2]

Экстрапирамидная система — эволюционно более древняя система моторного контроля [1] по сравнению с пирамидной системой. Имеет особое значение в построении и контроле движений, не требующих активации внимания. [2] Является функционально более простым регулятором по сравнению с регуляторами пирамидной системы. [3]

Экстрапирамидная система осуществляет непроизвольную регуляции и координацию движений, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций (смех, плач) [1] . Обеспечивает плавность движений, устанавливает исходную позу для их выполнения. [4]

При поражении экстрапирамидной системы нарушаются двигательные функции (например, могут возникнуть гиперкинезы, паркинсонизм), снижается мышечный тонус. [1]

Экстрапирамидная система (systema extrapyramidale) объединяет двигательные центры коры головного мозга, его ядра и проводящие пути, которые не проходят через пирамиды продолговатого мозга; осуществляет регуляцию непроизвольных компонентов моторики (мышечного тонуса, координации движений, позы).

От пирамидной системы экстрапирамидная система отличается локализацией ядер в подкорковой области полушарий и стволе головного мозга и многозвенностью проводящих путей. Первичными центрами системы являются хвостатое и чечевицеобразное ядра полосатого тела, субталамическое ядро, красное ядро и черное вещество среднего мозга. Кроме того, в экстрапирамидная система входят в качестве интеграционных центры коры большого мозга, ядра таламуса, мозжечок, преддверные и оливные ядра, ретикулярная формация. Частью экстрапирамидной системы является стриопаллидарная система, которая объединяет ядра полосатого тела и их афферентные и эфферентные пути. В стриопаллидарной системе выделяют филогенетически новую часть — стриатум, к которой относятся хвостатое ядро и скорлупа чечевицеобразного ядра, и филогенетически старую часть — паллидум (бледный шар). Стриатум и паллидум различаются по своей нейроархитектонике, связям и функциям.

Стриатум получает волокна из коры большого мозга, центрального ядра таламуса и черного вещества. Эфферентные волокна из стриатума направляются в паллидум, а также в черное вещество. Из паллидума волокна идут в таламус, гипоталамус, к субталамическому ядру и в ствол головного мозга. Последние образуют чечевицеобразную петлю и частично оканчиваются в ретикулярной формации, частично идут к красному ядру преддверным и оливным ядрам. Следующее звени экстрапирамидных путей составляют ретикулярно-спинномозговой, красноядерно-спинномозговой, преддверно-спинномозговой и оливоспинномозговой пути, оканчивающиеся в передних столбах и промежуточном сером веществе спинного мозга. Мозжечок включается в экстрапирамидную систему посредством путей, соединяющих его с таламусом, красным ядром и оливными ядрами.

Функционально экстрапирамидная система неотделима от пирамидной системы. Она обеспечивает упорядоченный ход произвольных движений, регулируемых пирамидной системой; регулирует врожденные и приобретенные автоматические двигательные акты, обеспечивает установку мышечного тонуса и поддержание равновесия тела; регулирует сопутствующие движения (например движения рук при ходьбе) и выразительные движения (мимика).

Содержание

Методы исследования

Выявлению патологии помогают различные методы исследования головного мозга: электроэнцефалография, реоэнцефалография, пневмоэнцефалография, ангиография, радионуклидная сцинтиграфия, компьютерная рентгеновская и позитронно-эмиссионная томография; регистрация состояния нервно-мышечной системы (электромиография, миотонометрия. греморография, кимография гиперкинезов в покое и при раздражении, кинорегистрация движений ускоренной съемкой с замедленной проекцией и др.), исследование содержания катехоламинов и других нейромедиаторов в крови и цереброспинальной жидкости.

Патология

Патологические синдромы возникают при поражении различных ядер и связей экстрапирамидной системы. Нарушаются двигательные функции, тонус мышц, поза, координация, эмоциональные проявления, вегетативно-сосудистые реакции. Нарушения могут проявляться как избытком движений и поз, появлением гиперкинезов, чрезмерной жестикуляцией, синкинезиями, так и дефицитом движений — акинезией.

У человека существует тесная филогенетическая связь между моторикой и мышечным тонусом, поэтому при патологии экстрапирамидной системы встречаются сочетанные нарушения моторики и тонуса мышц. Например «паллидарная ригидность», возникающая при поражении бледного шара и его связей (паркинсонизм, атеросклеротическая мышечная ригидность Ферстера), характеризуется, с одной стороны, усилением постуральных рефлексов и поз, появлением пластического мышечного тонуса, ступенчатостью мышечного сокращения, с другой — выпадением экстрапирамидных кинезов, обездвиженностью. При стриарных гиперкинетико-гипотонических синдромах гиперкинезы, вычурные позы, гримасы, жестикуляция, нарушения речи, письма, походки появляются на фоне мышечной гипотонии или дистонии (симптом Гордона).

Поражения экстрапирамидной системы возникают при различных заболеваниях головного мозга: энцефалитах (эпидемический, ревматический и др.), сосудистых заболеваниях черепно-мозговой травме, интоксикациях (угарный газ, свинец, ртуть и пр.), опухолях и др. Длительное применение нейролептических средств с изменением толерантности к лекарственному препарату может привести к повреждению экстрапирамидной системы. Экстрапирамидные синдромы могут быть следствием и более редких причин, например тяжелых форм аллергии, гипервентиляции, асфиксии, полиглобулии и др. Возможно развитие таких синдромов после стереотаксической операции. Известны заболевания, связанные с врожденной недостаточностью базальных ядер (миоклонус-эпилепсия, атетоз двойной и др.).

В патогенезе заболеваний экстрапирамидной системы большое значение придается нейрохимическим механизмам. В подкорковых областях головного мозга функционируют специализированные медиаторы-нейротрансмиттеры, действие которых нарушается в условиях патологии. Например, двигательные и эмоциональные нарушения при паркинсонизме обусловлены снижением активности двух систем дофаминергических нейронов: в нигростриарном пути (снижение двигательной активности) и в мезолимбическом пути (снижение эмоциональных реакций). При ослаблении активности дофамина в полосатом теле (нарушение «входа» дофаминовой системы на рецепторы холинергических нейронов) возникает избыток ацетилхолина, что ведет к появлению дрожания.

Одной из клинических форм экстрапирамидных нарушений является дрожание (тремор), при котором установлена заинтересованность системы красное ядро — ретикулярная формация зубчатое ядро мозжечка. Дрожание вариабельно по амплитуде, частоте, локализации (пальцы, шея, голова, гемитремор и др.). Статическое дрожание пальцев рук (тремор покоя) в виде скатывания пилюль, счета монет является важным признаком болезни Паркинсона (дрожательного паралича). В сочетании с ригидностью мышц, гипомимией образует дрожательно-ригидные формы паркинсонизма. Статодинамическое дрожание характерно для эссенциального тремора (тремор Минора), гепатоцеребральной дистрофии. Мозжечковый тип дрожания (динамическое, интенционное дрожание) характерен для рассеянного склероза, энцефалита. Нарушение моторных реакций при поражении покрышки мозгового ствола. ретикулярной формации, черной субстанции ведет к появлению фиксированных постуральных поз, усилению рефлексов положения флексорного или экстензорного вида. К постуральным локализованным позам типа «торсио» относится спастическая кривошея. Синдром развивается после энцефалита, интоксикаций, обусловлен высвобождением шейно-тонических и лабиринтных рефлексов на уровне оральных отделов мозгового ствола. Может сочетаться с другими экстрапирамидными гиперкинезами (дрожание, торсионная дистония и др.), что отличает кривошею экстрапирамидной природы от рефлекторной кривошеи (при добавочных ребрах, шейном радикулите, остеохондроз).

Короткие быстрые спазмы мышцы или ее части, напоминающие крупные фасцикуляции, рассматриваются как парамиоклонус Фридрейха. Мышечные сокращения, охватывающие мышцы-синергисты с перемещением частей тела и конечностей, относятся к миоклоническим гиперкинезам. Чаще встречается рубродентооливарная миоклония, развивающаяся после перенесенных энцефалитов, ревматизма, токсоплазмоза и др. Наследственная миоклония может сочетаться с эпилепсией (миоклонус-эпилепсия Унферрихта — Лундборга) или с мозжечковой асинергией (мозжечковая асинергия Ханта). Миоритмию, описанную Маринеску (G. Mannescu), которая локализуется главным образом в мышцах мягкого неба, слуховой трубы, относят к нижнеоливарному типу.

При поражении экстрапирамидной системы могут развиваться тики мышц лица, брюшной стенки, диафрагмы, голосовых складок (заикание). Генерализованный тик в сочетании с речевыми тиками у детей носит название болезни Туретта; существует тик диафрагмы, вызывающий икоту. Гиперкинезы с респираторными пароксизмами возникают в результате сокращения мышц диафрагмы, брюшной стенки и проявляются приступами быстрых судорожных выдохов, сопровождающихся криками, покашливанием. Во время пароксизмального респираторного гиперкинеза учащается пульс, наблюдаются вазомоторные расстройства.

Клиническую группу таламостриарных нарушений составляют различные формы хореи (малая хорея, хорея Гентингтона, атеросклеротическая хорея и др.). Судороги при хорее разбросанные, быстрые, мощные, появляются во всех частях тела и конечностях, сопровождаются гримасничаньем. Малая хорея является симптомом ревматического энцефалита. Гентингтона хорея — наследственное хроническое заболевание, протекающее с нарастающим слабоумием. После острых нарушений мозгового кровообращения в области внутренней капсулы и стриарных тел может появиться гемихорея. К вариантам хореических гиперкинезов относят гемибаллизм, характеризующийся бросковыми вращательными движениями в руке или ноге одной стороны тела в сочетании с гипотонией мышц. Развивается при поражении субталамического ядра Люиса и его связи с бледным шаром.

Патологические движения в дистальных отделах конечностей, распространяющиеся на мышцы лица и шеи, можно наблюдать при атетозе. Они изменчивы, совершаются как бы с преодолением препятствия, несинхронны, создают впечатление непрерывного волнообразного спазма, напоминающего движения щупальцев спрута. Мышечный тонус изменен по дистоническому типу. Двойной атетоз как разновидность детских форм атетоза связан с симметричной атрофией базальных ядер головного мозга, проявляется своеобразным гиперкинезом мышц лица и симметричным атетозом и кистях и стопах. Атетозный гиперкинез может сочетаться с детским церебральным параличом, быть следствием энцефалитов, сосудистых заболеваний головного мозга и др. Часто образует смешанные формы: хореатетоз, атетоз с таламической кистью и др. Экстрапирамидным гиперкинезом является торсионный спазм, для которого характерны распространенные спазмы больших мышечных групп. Возникают судорожно-тонические позы тела в виде опистотонуса, «торсио дуги». Гиперкинез при торсионном спазме напоминает кольцевые движения удава. Встречается торсионная дистония, сочетающаяся с гемибаллизмом, хореей, дрожанием и др.

Тонико-клонические судороги мышц лица отмечаются при лицевом параспазме. Ограниченный параспазм локализуется в верхней части лица (смыкание век), при распространенном спазме сокращаются все мимические мышцы, а также мышцы шеи и конечностей. Параспазму, как и многим экстрапирамидным синдромам, свойственны произвольные установки и позы, которые используются больными для снижения или прекращения гиперкинеза. При поражении экстрапирамидной системы нередко встречаются тонические спазмы взора, блефароспазм, неудержимые приступы смеха, плача, орально-мандибулярные дискинезии.

Сложные пароксизмальные гиперкинезы возникают во время насильственного плача. Они протекают циклами (по 2—3 мин) в виде махания рукой перед лицом, ритмических потираний области сердца, лица. Своеобразным экстрапирамидным синдромом является подкорковая эпилепсия.

Лечение экстрапирамидных синдромов затруднено. Используются этиотропные, симптоматические, общеукрепляющие лекарственные средства. В ряде случаев показаны иглотерапия, аутотренинг. Хирургическое лечение экстрапирамидных синдромов проводится с помощью стереотаксических операций на подкорковых узлах.

MED-anketa.ru

Медицинский портал о здоровье и красоте

Экстрапирамидная система — основа сознательных действий

Каждый человек совершает сознательные действия, за эти процессы непосредственно отвечает пирамидная система головного мозга. Каким образом запускаются непроизвольные реакции? Эти процессы происходят за счет функционирования экстрапирамидной системы. В данной статье пойдет речь о ее строении, основных функциях и возможных осложнениях при серьезных нарушениях.

Общее понятие о ЭС

Итак, за все сознательные движения (ходьба, речь, движения рук и т.д.) отвечает пирамидная система. Однако глубоко в головном мозге человека находится специальная экстрапирамидная система, которая отвечает за все наши новые навыки и возможности.

Ее формирование (эволюцию) ученые разделили на два отдельных периода:

  • неострианарный;
  • паллеострионарный.

Первая возникла намного раньше паллеострионарной, в совокупности они дополняют друг друга. За счет нее происходят процессы замедления двигательной активности, которые в свою очередь запускаются второй системой.

ЭС берет свое начало в головном мозгу (на участке варолиева моста и пролодговоатого мозга) и направляется до отделов спинного мозга. Она считается одной из первых, которые отвечают за двигательную активность человека.

Функции ЭС

За сознательные движения в человеческом организме отвечает пирамидная система. Например, чтобы во время еды человек мог поднести ко рту ложку или вилку, ему нужно заранее об этом подумать. Какие процессы считаются бессознательными и для своего запуска не требуют участия коры мозга? Получить ответ можно, только подробно изучив функции экстрапирамидной структуры. Итак, она отвечает за:

  • регулятивные процессы тонуса в мышечной мускулатуре. Есть группа мышц, которая не расслабляется даже в период покоя. Однако человек никогда не задумывается перед тем, как «подготовить» их к двигательной активности, это выполняет ЭС;
  • защитные рефлексы организма. Например, при громком хлопке или звуки человек непроизвольно закрывает глаза или вздрагивает;
  • сохранение равновесия. В данном случае, когда человек поскальзывается на льду: наклон корпуса меняется, подключаются руки. Это все выполняется на бессознательном уровне при участии ЭС;
  • навыки, которые приобретаются в течение жизненного цикла и закрепляются. В данном случае говорят о синдроме «Цезаря», который выполнял несколько действий одновременно. Человек может спокойно работать и при этом параллельно разговаривать по телефону. Все это стало возможным с помощью уникальной экстрапирамидной совокупности.

При поражении одного из участков этой структуры у человека развиваются серьезные нарушения в координации и т.д. Чтобы подробнее понять эти процессы, рассмотрим детально ее структуру.

Строение ЭС

Она представляет собой отдельные участки, которые находят глубоко в коре головного мозга. Поскольку данная структура считается одной из старых, то для нее характерно образование ядра. Подробное изучение ЭС началось во второй половине 19 века. Тогда ученые установили, что в состав ядра входят три компонента:

  • полосатое тело (стиатрум), которое разделено на два отдельных участка: хвостатый и чечевицеобразный. Последнее состоит из бледного слоя и скорлупы;
  • ограда, которая находится между слоями серого вещества. О ней существует мало информации, функции изучены учеными не до конца;
  • миндалевидный участок, который напрямую связан с подкорковой системой оргнаов обоняния и лимбиотической системой;
  • красные ядра, которые имеют парную природу. Именно от этого участка получают свое начало бессознательные импульсы, они направляются к мышечной мускулатуре скелета. Существует понятие перекреста Фореля, благодаря которому все процессы запускаются с двух сторон. Красный оттенок обусловлен наличием кровеносных капилляров и высоким содержанием феррума;
  • мозжечок не относится к экстрапирамидной системе, но он полностью участвует во всех бессознательных процессах человеческого организма;
  • черное содержимое, для которого характерна парность. Свое название получил из-за высокого содержания пигмента меланина. Анатомическое расположение — между ножкой и покрышкой мозга. Снабжается большим количеством кровеносных сосудов, напрямую связан с отделами мозга.
Читайте также:  Что такое гайморит, фронтит и другие синуситы: виды, классификация, место и коды в МКБ-10

Взаимосвязи между структурами экстрапирамидальной системы

До сих пор процессы взаимодействия остаются не полностью изученными. ЭС напрямую связана с таламусом, ретикуляционными ядрами, мостом, мозжечком и др. Для полноценного функционирования ко всем перечисленным структурам прибавляются гамма-мотонейтроны отделов спинного мозга.

Данная система тесно связана с пирамидной структурой. Благодаря этому взаимодействию у человека упорядочиваются все движения, которые провоцируются участками пирамидной системы. Отростки красного ядра экстрапирамидной системы формируют так называемый руброспинальный тракт. Он отвечает за двигательные процессы верхних конечностей человека.

Вестибулярный участок ЭС тесно связан с областью внутреннего уха, мозжечка и некоторыми отделами спинного мозга. Благодаря этому человек совершает движения шеей, туловищем, головой и конечностями. Помимо этого взаимосвязь с различными структурами головного мозга обеспечивает функции моргания, повороты головы и контроль мышечных сокращений. При нарушении одного из процессов у человека возникают различные осложнения.

Нарушения работы ЭС

При воздействии на организм человека ряда негативных факторов или заболеваний происходит нарушение функционирования экстрапирамидной системы. Это сопровождается повышенным или пониженным тонусом мышечной мускулатуры, искривлением осанки, расстройствами рефлекторного характера. Такие нарушения фиксировались при длительном приеме лекарств нейролептической группы (они оказывают прямой воздействие на участки головного мозга).

Среди самых известных нарушений экстрапирамидной системы можно выделить кривошею, дискинезию, дистонию и др. Например, при длительном приеме нейролептических препаратов у пациента диагностируют «синдром кролика». Это состояние, которое сопровождается непроизвольными сокращениями периоральной мышечной мускулатуры. Лечение данной патологии очень сложное и продолжительное. Также у человека могут наблюдаться непроизвольные сокращения мышц на лице или шее.

Важно отметить, что нарушения работы экстрапирамидной системы связана с наличием у человека черепно-мозговых травм, заболеваний головного мозга (энцефалит, меннигнит и др.), проблемы с кровеносными сосудами в мозгу, генетические болезни, травмы ребенка во время родов, наличие новообразований в мозгу и др. Болезнь Паркинсона является результатом нарушения ЭС. У больного происходит сильный тремор конечностей, речь становится монотонной, нарушается мимика.

В случае поражения черного вещества ЭС у больного значительно увеличиваются рефлексные функции со времени принятия первичной определенной позы. При поражении палладиума у пациента диагностируют гипертонию мышц, которая еще носит название восковой. В данном случае при совершении движений поза человека остается неизменной. Для таких больных характерна скованность в движениях, мимика на лице полностью отсутствует (выражение напоминает маску). Чтобы совершить то или иное движение (например, разогнуть руку) требуется приложить много усилий.

Лечение проблем, связанных с нарушениями ЭС длительное и сложное. Таким патологиям подвержены люди пожилого возраста, им назначают поддерживающую медикаментозную терапию.

Заключение

До последнего времени проблемы с разладами экстрапирамидной системы остаются не полностью изученными. Они разнообразные: от повышенной гибкости до полного ступора, исчезновением необходимых функций и появлением новых, развитием тремора или нервных тиков, хореи или гиперкинезов разного характера.

Данные патологии развиваются у человека, как в течение всей жизни, так и иметь одномоментный характер, они являются результатом плохой наследственности. При первых неприятных симптомах рекомендуется незамедлительно пройти диагностику. Лечение растягивается на всю жизнь, а человек не является полноценным членом общества. Однако ученым удается создавать новые современные препараты, которые помогают устранить эти проблемы.

Строение и функции экстрапирамидной системы

Экстрапирамидная система – это комплекс, состоящий из чувствительных и моторных ядер, а также проводящих путей, которые объединены общими функциями. Комплекс регулирует непроизвольную двигательную активность, координируя такие функции, как мышечный тонус, лицевая мимика, поддержание заданной позы.

Характеристика

В неврологии экстрапирамидная система определяется как анатомо-функциональное образование, объединяющее базальные ганглии (ядра), участки серого вещества в пределах среднего и промежуточного отделов головного мозга. Указанные структуры поддерживают связи с многочисленными отделами мозга головы и спины. Проводящие пути образования не проходят сквозь пирамиды в составе продолговатого мозга.

Влияние корковых отделов на деятельность комплекса происходит посредством проводящих трактов эфферентного типа. Главный путь – корково-стриарный, направленный сквозь переднюю ножку, отходящую от внутренней капсулы. Основные задачи образования – определение и поддержание оптимальной последовательности, продолжительности мышечных сокращений.

Именно это образование делает движения человека плавными и совершенными. Благодаря его деятельности движения получаются точными, тонко дифференцированными, быстрыми. Образование участвует в поддержании позы, удержании равновесия, формировании моторных проявлений эмоциональных реакций, определяет индивидуальность движений каждого человека.

Структура

Экстрапирамидная система – такое образование, которое состоит из подкорковых центров (отделы – высший и чувствительный), двигательных центров (отделы – подкорковый и сегментарный), эфферентных трактов, что предполагает активное взаимодействие указанных структур.

К экстрапирамидному образованию относятся структуры нервной системы – ядра (чечевицеобразное, хвостатое), а также миндалевидное тело, расположенное в глубинных слоях конечного мозга. В строении экстрапирамидной системы особое место занимает стриопаллидарная система, включающая в себя стриарный и паллидарный отделы.

Чечевицеобразное ядро образовано 3 отделами – 2-мя медиальными, расположенными ближе к срединной плоскости (бледный шар), и единственным латеральным, находящимся дальше от центра (скорлупа). Скорлупа вместе с хвостатым ядром образуют полосатое тело – основу стриарной системы. Структуры в пределах стриопаллидарной системы тесно взаимодействуют между собой.

Стриопаллидарный отдел поддерживает связи с остальными функциональными участками экстрапирамидного образования – ретикулярной формацией, мозжечком, черным веществом, красным ядром. Эфферентные (направленные от мозговых центров к исполнительным органам) сигналы поступают от образования к периферическим двигательным нейронам, находящимся в пределах стволового отдела и спинного мозга.

Полосатое тело, известное так же, как стриатум, поддерживает двухстороннюю связь с черным веществом. Взаимодействие в обоих направлениях осуществляется посредством аксонов, отходящих от стрионигральных и нигростриарных нервных клеток. Нигростриарный путь – один из ведущих дофаминергических трактов, соединяет полосатое тело с отделом среднего мозга – покрышкой, и затем с черным веществом.

Нигростриарный тракт – самый мощный в дофаминергическом отделе. Аксоны, отходящие от его нейронов, продуцируют около 80% дофамина, который в экстрапирамидной системе играет роль возбуждающего вещества, нейромедиаторы дофаминергического отдела включают вещества тормозящего действия (ГАМК, ацетилхолин). ГАМК и ацетилхолин служат антагонистами дофамина.

Благодаря влиянию дофамина повышается объем, увеличивается скорость движений, устраняется эффект скованности, ограниченности движений, уменьшается гипертонус мышечной ткани. Например, болезнь Паркинсона сопровождается гибелью нейронов черного вещества, что приводит к появлению симптомов – ограничение двигательной активности, мышечная ригидность, неустойчивость в заданной позе, тремор.

Аналогичные эффекты, а также дистонии (нарушение мышечного тонуса), акатизии (внутреннее беспокойство, заставляющее больного постоянно менять позу, совершать бесцельные движения), дискинезии (патологическая неконтролируемая двигательная активность) возникают на фоне приема нейролептиков, которые угнетают передачу биоэлектрических импульсов по нигростриарному тракту.

Нигростриарные нейроны угнетают действие стриарных нервных клеток, оказывающих холинергический (тормозящий) эффект. При этом уменьшается тормозящее влияние холинергических нейронов на структуры паллидума (бледный шар – отделы чечевицеобразного ядра в пределах экстрапирамидной системы). Схема строения экстрапирамидной системы предполагает наличие отделов:

  • Субталамическое ядро, находящееся в промежуточном мозге.
  • Красное ядро и субстанция черного цвета (черное вещество), которые расположены в среднем мозге.
  • Вестибулярные и оливные ядра, находящиеся снизу в продолговатом мозге.

Указанные образования взаимодействуют с корковыми структурами (в медиобазальной части), мозжечком и ретикулярной формацией в пределах мозгового ствола. Тесное взаимодействие стриопаллидарного отдела с гипоталамусом играет решающую роль в формировании эмоциональных реакций. Связи отделов экстрапирамидного образования в упрощенном варианте можно представить в схематическом виде:

  1. В ядра таламуса от чувствительных ядер (поддерживают коммуникативные связи) в составе зрительного бугра поступают сведения от периферических отделов.
  2. Происходит обработка и интеграция принятой информации.
  3. Соответствующие импульсы перенаправляются в лимбическую область коркового слоя, предцентральную извилину, ядра – гипоталамуса, хвостатое и красное.
  4. Полосатое тело (базальные ганглии полушарий) и бледный шар, функционально объединенные в стриопаллидарную систему, передают импульсы в направлении подкорковых моторных центров экстрапирамидного образования.
  5. От подкорковых моторных центров импульсы перенаправляются к двигательным ядрам, принадлежащим черепным нервам и рогам в пределах спинного мозга.

Мозжечок участвует в работе экстрапирамидного образования благодаря связям с красным и оливным ядрами, а также с таламусом. Деятельность экстрапирамидной системы неразделима с работой пирамидной. Экстрапирамидный отдел координирует, совершенствует порядок произвольных движений, регулируемых пирамидным образованием.

Экстрапирамидные тракты

В анатомии в составе экстрапирамидной системы особое место занимает красное ядро, которое представляет собой ведущий центр двигательной координации. Красное ядро взаимодействует с многочисленными структурами:

  • Корковый слой полушарий.
  • Стриопаллидарная система.
  • Ядра таламуса (в пределах промежуточного мозга), область, расположенная ниже таламуса.
  • Мозжечок.

Биоэлектрические сигналы, поступающие в красное ядро от вышеперечисленных отделов, подвергаются обработке и перенаправляются по красноядерно-спинномозговому тракту к исполнительным органам – скелетным мышцам. Благодаря совокупной деятельности структур поддерживается способность выполнять сложные повседневные, привычные движения, к которым относят ходьбу, бег. Основные эффекты:

  1. Обеспечение пластичности, плавности движений.
  2. Поддержание заданной позы.
  3. Поддержание нужного тонуса мускулатуры скелета.

Другой проводящий путь экстрапирамидной системы – корково-красноядерный, сформированный аксонами, отходящими от нейронов больших гемисфер, преимущественно расположенных в лобной доле. Тракт проходит сквозь находящуюся спереди ножку в пределах внутренней капсулы. Малое количество нервных ответвлений тракта заканчивается, достигая красного ядра.

Остальные ответвления направляются к ганглиям стриарной системы – к структурам скорлупы, хвостатого ядра. Пучок нервных ответвлений, который заканчивается в пределах стриарной системы, называется корково-стриарным путем. Тракт, соединяющий стриарную систему с нервными клетками, образующими красное ядро, называется стриарно-красноядерный. От корковых отделов к промежуточному мозгу пролегает корково-таламический путь.

Красное ядро функционально связано с такими частями промежуточного мозга, как таламус (ядра медиального расположения – чувствительный центр в пределах экстрапирамидного образования), бледный шар, гипоталамус (задние ядра). Аксоны, отходящие от нейронов, образующих промежуточный мозг, объединяются в таламо-красноядерный тракт. Ответвления таламо-красноядерного тракта заканчиваются в области черной субстанции и красного ядра.

Клетки, из которых состоит черное вещество, взаимодействуют с нейронами, образующими красное ядро. Импульсы, которые поступают к красному ядру со стороны мозжечка, проходят по мозжечково-красноядерному пути, осуществляют коррекционную деятельность. Речь идет о координации тонких, сложных произвольных движений, об устранении инерции при совершении двигательных актов.

Красное ядро – важнейший центр в пределах экстрапирамидной системы, который дает начало (крупные мультиполярные клетки) красноядерно-спинномозговому пути, являющемуся эфферентным трактом экстрапирамидной системы. Аксоны моторных нейронов ответвляются от спинного мозга в составе отростков спинномозговых нервов, простираются к мышцам скелета.

В экстрапирамидной системе выделяют проводящую структуру – нисходящий крыше-спинномозговой тракт. Благодаря импульсам, передаваемым по этому пути, возникают безусловные, рефлекторные моторные реакции на сильные внешние стимулы (например, зрительные, тактильные, слуховые).

Другой нисходящий путь – ретикулярно-спинномозговой. При помощи сигналов, которые идут по тракту, возникают сложные рефлекторные реакции, требующие совокупной работы одновременно нескольких мышечных групп, например, деятельность органов дыхания (вдох, выдох), хватательные рефлексы.

Биоэлектрические импульсы, проходящие по этому пути, координируют совместную работу мышц разных групп. В пределах экстрапирамидной системы пролегает нисходящий преддверно-спинномозговой тракт, который обеспечивает рефлекторные двигательные реакции, если нарушается равновесие туловища.

Другой тракт – оливо-спинномозговой, также относится к нисходящим путям. Благодаря сигналам, идущим по тракту, возникают рефлекторные реакции, регулирующие тонус мышц, пролегающих в области шеи. Сигналы, проходящие по тракту, участвуют в сохранении равновесия туловища. Анатомия (строение) экстрапирамидной системы определяет ее физиологию – функции.

Функции

Основная функция экстрапирамидной системы – формирование и регуляция рефлекторных двигательных актов. В задачи системы входит преодоление инерции (свойство тела оставаться в состоянии покоя и движения без влияния внешних факторов), координация произвольных и неконтролируемых действий, регуляция спонтанной мимики. Другие функции:

  1. Поддержание способности принимать позу, оптимально подходящую для запланированного действия.
  2. Обеспечение оптимального баланса тонуса мышц-сгибателей и мышц-разгибателей.
  3. Обеспечение плавности движений.
  4. Поддержание соразмерности (сила, направление, скорость) движений.

Физиология экстрапирамидной системы в рамках взаимодействия с другими структурами головного мозга предполагает влияние на работу внутренних органов. Повреждение структурных элементов системы приводит к двигательной асимметрии, возникновению насильственных, неконтролируемых движений – избыточных или ограниченных вследствие мышечных спазмов.

Патологии

Нарушения в работе экстрапирамидной системы сопровождаются симптомами – изменение побуждений, мотивов к двигательной активности, изменение тонуса мускулатуры. При повреждении структур системы ослабевает или утрачивается способность к совершению эффективных (рациональных, оптимальных по силе, скорости, направлению) произвольных и рефлекторных двигательных актов.

Симптомы поражения элементов экстрапирамидной системы зависят от расположения патологического очага – в стриатуме или паллидуме. Повышенная тормозящая активность стриатума приводит к гипокинезии (бедность, скудость движений), амимии (отсутствие мимики, лицо, как застывшая маска). Гипофункция стриатума обуславливает появление гиперкинезов (избыточные неконтролируемые движения).

При поражении крыше-спинномозгового пути ослабевают безусловные рефлексы, в норме вызываемые внешними раздражителями, например, зрительными или слуховыми. Одно из самых распространенных заболеваний, обусловленных повреждением отделов экстрапирамидной системы – болезнь Паркинсона. Патология развивается на фоне гибели нейронов черного вещества, которые в норме продуцируют нейромедиатор дофамин.

Поражение черного вещества в пределах экстрапирамидной системы с последующим сокращением численности нейронов, продуцирующих дофамин, считается патоморфологической основой развития синдромов – паркинсонизма или акинетико-ригидного. Болезнь Паркинсона сопровождается двигательными расстройствами, нарушением памяти и мыслительной деятельности. Выделяют другие клинические синдромы:

  • Палеостриарный, обусловленный повреждением вещества бледного шара. Патологии: эссенциальный тремор (дрожание рук, головы, голосовых связок), болезни Паркинсона и Галлервордена-Шпатца.
  • Неостриарный, обусловленный повреждением вещества скорлупы и хвостатого ядра. Патологии: болезнь Гентингтона, другие виды хореи (беспорядочные, отрывистые неконтролируемые движения), разные виды дистонии (нарушение мышечного тонуса).
  • Оливоруброцеребеллярный, обусловленный повреждением вещества оливы, красного ядра, мозжечка. Патология – диссинергия Ханта миоклонического типа.

Поражение экстрапирамидной системы проявляется гипокинезией или гиперкинезией. В первом случае речь идет о таких проявлениях, как неустойчивость походки, феномен застывания, ригидность мышц, навязчивая медлительность, кататонический ступор. Гиперкинезы проявляются избыточной патологической моторной активностью – лицевые гемиспазмы, миоклония, тики, тремор, синдром, выражающийся в беспокойстве ног.

Экстрапирамидная система регулирует двигательную активность произвольного и рефлекторного характера. Поражение структуры приводит к развитию паркинсонизма и других моторных расстройств.

Ссылка на основную публикацию